Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Clin Med ; 9(11)2020 Nov 06.
Article in English | MEDLINE | ID: covidwho-918219

ABSTRACT

PURPOSE: To evaluate diagnostic accuracy of conventional radiography (CXR) and machine learning enhanced CXR (mlCXR) for the detection and quantification of disease-extent in COVID-19 patients compared to chest-CT. METHODS: Real-time polymerase chain reaction (rt-PCR)-confirmed COVID-19-patients undergoing CXR from March to April 2020 together with COVID-19 negative patients as control group were retrospectively included. Two independent readers assessed CXR and mlCXR images for presence, disease extent and type (consolidation vs. ground-glass opacities (GGOs) of COVID-19-pneumonia. Further, readers had to assign confidence levels to their diagnosis. CT obtained ≤ 36 h from acquisition of CXR served as standard of reference. Inter-reader agreement, sensitivity for detection and disease extent of COVID-19-pneumonia compared to CT was calculated. McNemar test was used to test for significant differences. RESULTS: Sixty patients (21 females; median age 61 years, range 38-81 years) were included. Inter-reader agreement improved from good to excellent when mlCXR instead of CXR was used (k = 0.831 vs. k = 0.742). Sensitivity for pneumonia detection improved from 79.5% to 92.3%, however, on the cost of specificity 100% vs. 71.4% (p = 0.031). Overall, sensitivity for the detection of consolidation was higher than for GGO (37.5% vs. 70.4%; respectively). No differences could be found in disease extent estimation between mlCXR and CXR, even though the detection of GGO could be improved. Diagnostic confidence was better on mlCXR compared to CXR (p = 0.013). CONCLUSION: In line with the current literature, the sensitivity for detection and quantification of COVID-19-pneumonia was moderate with CXR and could be improved when mlCXR was used for image interpretation.

2.
Eur J Radiol Open ; 7: 100272, 2020.
Article in English | MEDLINE | ID: covidwho-816459

ABSTRACT

RATIONALE AND OBJECTIVES: To demonstrate the first experience of a deep learning-based algorithm for automatic quantification of lung parenchymal abnormalities in chest CT of COVID-19 patients and to correlate quantitative results with clinical and laboratory parameters. MATERIALS AND METHODS: We retrospectively included 60 consecutive patients (mean age, 61 ± 12 years; 18 females) with proven COVID-19 infection undergoing chest CT between March and May 2020. Clinical and laboratory data (within 24 h before/after chest CT) were recorded. Prototype software using a deep learning algorithm was applied for automatic segmentation and quantification of lung opacities. Percentage of opacity (PO, ground-glass and consolidations) and percentage of high opacity (PHO, consolidations), were defined as 100 times the volume of segmented abnormalities divided by the volume of the lung mask. RESULTS: Automatic CT analysis of the lung was feasible in all patients (n = 60). The median time to accomplish automatic evaluation was 120 s (IQR: 118-128 s). In four cases (7 %), manual corrections were necessary. Patients with need for mechanical ventilation had a significantly higher PO (median 44 %, IQR: 23-58 % versus 13 %, IQR: 10-24 %; p = 0.001) and PHO (median: 11 %, IQR: 6-21 % versus 3%, IQR: 2-7 %, p = 0.002) compared to those without. The PO and PHO moderately correlated with c-reactive protein (r = 0.49-0.60, both p < 0.001) and leucocyte count (r = 0.30-0.40, both p = 0.05). PO had a negative correlation with SO2 (r=-0.50, p = 0.001). CONCLUSION: Preliminary experience indicates the feasibility of a rapid, automatic quantification tool of lung parenchymal abnormalities in COVID-19 patients using deep learning, with results correlating with laboratory and clinical parameters.

3.
PLoS One ; 15(10): e0240078, 2020.
Article in English | MEDLINE | ID: covidwho-814641

ABSTRACT

BACKGROUND: To evaluate chest-computed-tomography (CT) scans in coronavirus-disease-2019 (COVID-19) patients for signs of organizing pneumonia (OP) and microinfarction as surrogate for microscopic thromboembolic events. METHODS: Real-time polymerase-chain-reaction (RT-PCR)-confirmed COVID-19 patients undergoing chest-CT (non-enhanced, enhanced, pulmonary-angiography [CT-PA]) from March-April 2020 were retrospectively included (COVID-19-cohort). As control-groups served 175 patients from 2020 (cohort-2020) and 157 patients from 2019 (cohort-2019) undergoing CT-PA for pulmonary embolism (PE) during the respective time frame at our institution. Two independent readers assessed for presence and location of PE in all three cohorts. In COVID-19 patients additionally parenchymal changes typical of COVID-19 pneumonia, infarct pneumonia and OP were assessed. Inter-reader agreement and prevalence of PE in different cohorts were calculated. RESULTS: From 68 COVID-19 patients (42 female [61.8%], median age 59 years [range 32-89]) undergoing chest-CT 38 obtained CT-PA. Inter-reader-agreement was good (k = 0.781). On CT-PA, 13.2% of COVID-19 patients presented with PE whereas in the control-groups prevalence of PE was 9.1% and 8.9%, respectively (p = 0.452). Up to 50% of COVID-19 patients showed changes typical for OP. 21.1% of COVID-19 patients suspected with PE showed subpleural wedge-shaped consolidation resembling infarct pneumonia, while only 13.2% showed visible filling defects of the pulmonary artery branches on CT-PA. CONCLUSION: Despite the reported hypercoagulability in critically ill patients with COVID-19, we did not encounter higher prevalence of PE in our patient cohort compared to the control cohorts. However, patients with suspected PE showed a higher prevalence of lung changes, resembling patterns of infarct pneumonia or OP and CT-signs of pulmonary-artery hypertension.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Pulmonary Artery/pathology , Pulmonary Infarction/diagnostic imaging , Thromboembolism/diagnostic imaging , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/diagnostic imaging , Female , Humans , Lung/blood supply , Lung/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL